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Abstract. The transmission probability of ultracold atoms through a micromaser is studied in the general
case where a detuning between the cavity mode and the atomic transition frequencies is present. We
generalize previous results established in the resonant case (zero detuning) for the mesa mode function. In
particular, it is shown that the velocity selection of cold atoms passing through the micromaser can be very
easily tuned and enhanced using a non-resonant field inside the cavity. Also, the transmission probability
exhibits with respect to the detuning very sharp resonances that could define single cavity devices for high
accuracy metrology purposes (atomic clocks).

PACS. 42.50.-p Quantum optics – 32.80.-t Photon interactions with atoms – 32.80.Lg Mechanical effects
of light on atoms, molecules, and ions

1 Introduction

Laser cooling of atoms has become these last years an
interesting tool in atom optics (see e.g. Refs. [1,2] for a
review of these topics). The production of slow atomic
beams and the control of their motion by laser light has
opened a variety of applications including matter-wave in-
terferometers [3], atomic lenses or atom lithography [4].
In such experiments, it is often highly desirable to control
actively the velocity distribution of an atomic ensemble.
More particularly, devices for narrowing this distribution
over a well fixed velocity are very useful to define an
atomic beam with a long coherence length (like in atom
lasers [5]). Velocity monochromatization of atomic beams
making use of an optical cavity has already been suggested
by Balykin [6]. For ultracold atoms, Löffler et al. [7] have
recently proposed a velocity selector based on a 1D micro-
maser scheme (also referred to as mazer). They suggest to
send a beam of cold atoms through a microwave cavity in
resonance with one of the atomic transitions. The small
velocity of the atoms at the entrance of the micromaser re-
quire to quantize their center-of-mass motion to describe
correctly their interaction with the cavity quantum field
(see e.g. Refs. [8,9] for an overview of quantized motion in
quantized fields). This quantization is an essential feature
as it leads to a fundamental interplay between their mo-
tion and the atom-field internal state [10]. It results from
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this that most of the incoming atoms may be found re-
flected by the field present in the cavity, except at certain
velocities where they can be transmitted through with a
reasonable efficiency. At the exit of the cavity, the lon-
gitudinal velocity distribution of the cold atomic beam
may be this way significantly narrowed [7] and a splitting
of the atomic wave packet may be observed [11]. These
effects have been first described by Haroche et al. [12],
Englert et al. [13] and Battocletti and Englert [14]. They
have been recently experimentally observed in the optical
domain (see, for example, Pinkse et al. [15]).

In this paper, we extend the proposal of Löffler
et al. [7] by considering an off-resonant interaction be-
tween the atoms and the cavity field. This case offers
new attractive perspectives for metrology purposes and
in the velocity selection scheme. Let us emphasize that
this scheme is in no way a proposal to reduce the trans-
verse momentum spread of an atomic beam. For applica-
tions where this point is important (like for example in the
case of an atomic beam splitter based on Doppleron res-
onances [16]), other schemes like quantum-nondemolition
measurement of atomic momentum [17] should rather be
used.

2 Transmission probability through the mazer

We consider two-level atoms moving along the z-direction
on the way to a cavity of length L. The atoms are cou-
pled off-resonantly to a single mode of the quantized
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field present in the cavity. The atomic center-of-mass mo-
tion is described quantum mechanically and the usual
rotating-wave approximation is made. The Hamiltonian
of the system reads

H = �ω0σ
†σ + �ωa†a +

p2

2m
+ �gu(z)

(
a†σ + aσ†) , (1)

where p is the atomic center-of-mass momentum along the
z-axis, m the atomic mass, ω0 the atomic transition fre-
quency, ω the cavity field mode frequency, σ = |b〉〈a| (|a〉
and |b〉 are respectively the upper and lower levels of the
two-level atom), a and a† are respectively the annihila-
tion and creation operators of the cavity radiation field,
g is the atom-field coupling strength and u(z) is the cav-
ity field mode. We denote also hereafter κ =

√
2mg/�,

κn = κ 4
√

n + 1, δ the detuning ω − ω0, and θn the angle
defining the dressed-state basis given by

cot 2θn = − δ

Ωn
, (2)

with Ωn = 2g
√

n + 1.
The properties of the mazer have been established in

the resonant case by Scully and collaborators [18–20]. We
extended very recently these studies in the non-resonant
case [9], especially for the mesa mode function (u(z) = 1
inside the cavity, 0 elsewhere). Particularly, we have shown
that, if the cavity field is prepared in the Fock state |n〉, an
atom initially in the excited state |a〉 with a momentum �k
will be found transmitted by the cavity in the same state
or in the lower state |b〉 with the respective probabilities

T a
n (k) = |τa

n(k)|2, (3)

and

T b
n+1(k) =






kb

k |τb
n+1(k)|2 if

(
k
κ

)2
> δ

g ,

0 otherwise,
(4)

where

k2
b = k2 − κ2 δ

g
, (5)

and

τa
n(k) =

cos2 θn
τ−

n (k)

τ−
n (kb)

τ+
n (kb) + sin2 θn τ−

n (k)
(
cos2 θn

k−kb

kc
n

− 1
)(

cos2 θn
k−kb

kt
n

− 1
) , (6)

τb
n+1(k) =

sin 2θn

4

(
1 +

k

kb

)

×
τ−

n (k)

τ̃−
n (k,kb)

τ+
n (kb) − τ+

n (kb)

τ̃+
n (k,kb)

τ−
n (k)

(
cos2 θn

k−kb

kc
n

− 1
)(

cos2 θn
k−kb

kt
n

− 1
) , (7)

with

τ±
n (k) =

[
cos(k±

n L) − iΣ±
n (k) sin(k±

n L)
]−1

, (8)

τ̃±
n (k, kb) =

[
cos(k±

n L) − iΣ̃±
n (k, kb) sin(k±

n L)
]−1

, (9)

k+
n

2 = k2 − κ2
n tan θn, (10)

k−
n

2 = k2 + κ2
n cot θn, (11)

Σ±
n (k) =

1
2

(
k±

n

k
+

k

k±
n

)
, (12)

Σ̃±
n (k, kb) =

(
k±

n

k + kb
+

kb

k + kb

k

k±
n

)
, (13)

kc
n = i

(
k + i cot(k−

n L
2 )k−

n

)(
kb + i cot(k+

n L
2 )k+

n

)

cot(k−
n L
2 )k−

n − cot(k+
n L
2 )k+

n

,

(14)

kt
n = i

(
k − i tan(k−

n L
2 )k−

n

) (
kb − i tan(k+

n L
2 )k+

n

)

tan(k+
n L
2 )k+

n − tan(k−
n L
2 )k−

n

·

(15)

The atom transmission in the lower state |b〉 results in a
photon induced emission inside the cavity. In presence of a
detuning, these atoms are found to propagate with a mo-
mentum �kb different from the initial value �k (see [9]).
This results merely from the energy conservation. Con-
trary to the resonant case, the final state of the pro-
cess |b, n+1〉 has an internal energy different from that of
the initial one (|a, n〉). The energy difference �δ is trans-
ferred to the atomic kinetic energy. According to the sign
of the detuning, the atoms are either accelerated (δ < 0,
heating process) or decelerated (δ > 0, cooling process). In
this last case, the initial atomic kinetic energy (�2k2/2m)
must be greater than �δ to ensure that the photon emis-
sion may occur. This justifies the conditional result in
equation (4).

In the ultracold regime (k � κn

√
tan θn) and for

exp(κnL) � 1 we have τ+
n (k) � 0 and the total trans-

mission probability Tn(k) = T a
n (k)+ T b

n+1(k) simplifies to

Tn(k) = f(θn)I(L)|τ−
n (k)|2 (16)

with

f(θn) =

{
sin2 θn(sin2 θn + kb

k cos2 θn) if
(

k
κ

)2
> δ

g ,

sin4 θn otherwise.
(17)

I(L) =
1

∣
∣
∣cos2 θn

k−kb

kc
n

− 1
∣
∣
∣
2 ∣
∣
∣cos2 θn

k−kb

kt
n

− 1
∣
∣
∣
2 , (18)

and
|τ−

n (k)|2 � 1

1 +
(

κn

2k

)2 cot θn sin2(k−
n L)

· (19)
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Fig. 1. Transmission probability of an excited atom through the mazer with respect to k/κ. (a) δ/g = 0, (b) δ/g = ±0.005.
The interaction length was fixed to κL = 103π and n = 0.

At resonance (δ = 0), kb = k, θn = π/4 and equation (16)
well reduces to the result of Löffler et al. [7]

Tn(k) =
1
2
|τ−

n (k)|2 =
1
2

1

1 +
(

κn

2k

)2 sin2(k−
n L)

· (20)

We present in Figure 1 the transmission probability of an
initially excited atom through the mazer. With respect to
the wavenumber of the incoming atoms k/κn or the inter-
action length κnL, the transmission probability T shows
various resonances. For (k/κ)2 > δ/g, their position is
given by

k−
n L = mπ (m a positive integer). (21)

As the de Broglie wavelength is given in the ultracold
regime by λdB = 2π/k−

n , this occurs when the cavity
length fits a multiple of half the de Broglie wavelength λdB

of the atom inside the cavity:

L = m
λdB

2
· (22)

The position of the mth resonance in the k space is there-
fore given by

k

κ

∣
∣
∣∣
m

=

√(mπ

κL

)2

−√
n + 1 cot θn. (23)

For (k/κ)2 ≤ δ/g, a careful analysis of the transmission
probability (16) yields resonance positions slightly shifted
from the values given by equation (21).

We have labelled most resonances of Figure 1 by the
corresponding integer m. The amplitude Am of a given
resonance strongly depends on the detuning value (see
Fig. 2). We have

Am =






f(θn)I(m
λdB

2
) � 4f(θn)

(1 + kb

k

∣
∣
m

)2
if

k

κ

∣
∣
∣
∣
m

>

√
δ

g
,

1 otherwise.
(24)

Fig. 2. Amplitude of the 1001st resonance with respect to the
detuning value (n = 0, κL = 103π).

For (k/κ)2 ≤ δ/g and according to equation (4), the atom
cannot leave the cavity in the state |b〉. The system be-
comes in this case very similar to the elementary prob-
lem of the transmission of a structureless particle through
a potential well defined by the cavity and the resonance
amplitudes reach the value 1.

Same kind of resonances for the transmission prob-
ability are observed with respect to the detuning (see
Fig. 3a). For realistic experimental parameters (see discus-
sion in [19]), these resonances may even become extremely
narrow. Their width amounts only 10−2 Hz for κL = 105,
g = 100 kHz and k/κ = 0.01. This could define very use-
ful metrology devices (atomic clocks for example) based
on a single cavity passage and with better performances
than what is usually obtained in the well-known Ramsey
configuration with two cavities or two passages through
the same cavity [21].

The same curve of the transmission probability is
shown in Figure 3b over an extended scale. As expected,
for very large (positive or negative) detunings, the atom-
cavity coupling vanishes and the transmission probability
tends towards 1. For large positive detunings, θn → π/2
and this behavior is well predicted by equation (16) which
yields Tn(k) → 1. For large negative detunings, θn → 0
and we get from equation (16) Tn(k) → 0. In fact,
when increasing the detuning towards negative values,
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Fig. 3. Transmission probability of an excited atom through the mazer with respect to the detuning (k/κ = 0.05, κL = 1000,
n = 0). The only difference between the two curves resides in the scale used for the horizontal axis.

the system leaves the cold atom regime and switches to
the hot atom one. For k � κ, this occurs at the detuning
value (see [9])

− δ

g
= (n + 1)

(κ

k

)2

· (25)

For large negative detunings, equation (16) is therefore no
more valid and the transmission probability must be com-
puted directly using equations (3) and (4). This explains
why the transmission probability changes abruptly at
δ/g � −400 in Figure 3b, defining this way a well-defined
“window” where the transmission probability drops to a
negligible value. This window is all the larger since the
atoms are initially colder.

3 Velocity selection

If we consider an atomic beam characterized with a ve-
locity distribution Pi(k), each atom will be transmitted
through the cavity with more or less efficiency depending
on the Tn(k) value. The interaction of these atoms with
the cavity will lead through the photon emission process
to a progressive grow of the cavity photon number. By tak-
ing into account the presence of thermal photons and the
cavity field damping, Meyer et al. [18] have shown that a
stationary photon distribution Pst(n) is established inside
the cavity. This distribution is given by

Pst(n) = Pst(0)
n∏

m=1

nb + [r/C ]Pem(m − 1)/m

nb + 1
, (26)

where nb is the mean thermal photon number, r is
the atomic injection rate, C is the cavity loss rate
and Pem(m− 1) is the mean induced emission probability

Pem(n) =
∫ ∞

0

Pem(n, k)Pi(k)dk, (27)

with Pem(n, k) the induced emission probability of a single
atom with momentum �k interacting with the cavity field
containing n photons. In presence of a detuning and in the

ultracold regime we have shown in [9] that this probability
is given by

Pem(n, k) =
kb

k

I(L)
2

1 + cot θn

2 sin(2κn

√
cot θnL)

1 +
(

κn

2k

)2 cot θn sin2(κn

√
cot θnL)

·
(28)

After the stationary photon number distribution has
been established, the atomic transmission probabilities in
the |a〉 state and the |b〉 state are respectively given by

T a(k) =
∞∑

n=0

Pst(n)T a
n (k), (29)

and

T b(k) =
∞∑

n=0

Pst(n)T b
n+1(k). (30)

This results in the following final velocity distribution of
the transmitted atomic beam:

Pf (k) =

{
Pi(k)T a(k) + Pi(k′)T b(k′) if

(
k
κ

)2
> − δ

g ,

Pi(k)T a(k) otherwise,
(31)

where k′ is such that

k′
b ≡

√

k′2 − κ2
δ

g
= k (32)

that is
k′2 = k2 + κ2 δ

g
· (33)

We show in Figure 4 how a Maxwell-Boltzmann distri-
bution (with k0/κ = 0.05 where k0 is the most probable
wave number) is affected when the atoms are sent through
the cavity. The cavity parameters have been taken iden-
tical to those considered in [7] to underline the detuning
effects. We see from these figures that the final distribu-
tions are dominated by a narrow single peak whose po-
sition depends significantly on the detuning value. This
could define a very convenient way to select any desired
velocity from an initial broad distribution. Also, notice
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Fig. 4. Initial (plain curve) and final (dashed curves) velocity distributions (a) at resonance and (b) for various detuning values.
These curves were computed for κL = 200π, r/C = 100 and nb = 0.2.

from the Pf scale that a positive detuning significantly
enhances the selection process. Such detunings indeed
maximize the resonances of the transmission probability
through the cavity (see Fig. 3a).

4 Summary

In this paper, we have presented the general properties of
the transmission probability of ultracold atoms through
a micromaser in the general off-resonant case. An analyt-
ical expression of this probability has been given in the
special case of the mesa mode function. Particularly, we
have shown that this probability exhibits with respect to
the detuning very fine resonances that could be very useful
for metrology devices. We have also demonstrated that the
velocity selection in an atomic beam may be significantly
enhanced and easily tuned by use of a positive detuning.
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